

International Journal of Medical Science and Advanced Clinical Research (IJMACR)

Available Online at:www.ijmacr.com

Volume - 8, Issue - 6, November - 2025, Page No.: 08 - 16

Assessment of Sexual Function in Women with Pelvic Organ Prolapse Using the PISQ-12: A Comparative Study

¹Dr. Sunita Yadav, Post Graduate Student, Department of Obstetrics & Gynaecology, SMS Medical College & Attached Group of Hospitals, Jaipur, Rajasthan, India

²Dr. Deepa Chaudhary, Professor, Department of Obstetrics & Gynaecology, SMS Medical College & Attached Group of Hospitals, Jaipur, Rajasthan, India

³Dr. Riya Mittal, Post Graduate Student, Department of Obstetrics & Gynaecology, SMS Medical College & Attached Group of Hospitals, Jaipur, Rajasthan, India

⁴Dr. Pooja Yadav, Post Graduate Student, Department of Obstetrics & Gynaecology, SMS Medical College & Attached Group of Hospitals, Jaipur, Rajasthan, India

Corresponding Author: Dr. Sunita Yadav, Post Graduate Student, Department of Obstetrics & Gynaecology, SMS Medical College & Attached Group of Hospitals, Jaipur, Rajasthan, India.

How to citation this article: Dr. Sunita Yadav, Dr. Deepa Chaudhary, Dr. Riya Mittal, Dr. Pooja Yadav, "Assessment of Sexual Function in Women with Pelvic Organ Prolapse Using the PISQ-12: A Comparative Study", IJMACR- November - 2025, Volume – 8, Issue - 6, P. No. 08 – 16.

Open Access Article: © 2025 Dr. Sunita Yadav, et al. This is an open access journal and article distributed under the terms of the creative common's attribution license (http://creativecommons.org/licenses/by/4.0). Which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Type of Publication: Original Research Article

Conflicts of Interest: Nil

Abstract

Background: Pelvic organ prolapse (POP) is a prevalent pelvic floor disorder that significantly affects women's physical, psychological, and sexual health. Despite its high incidence, the impact of POP on sexual function remains underexplored, particularly among Indian women. This study aimed to evaluate sexual dysfunction in women with POP using the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) and to identify key contributing factors.

Methods: A hospital-based cross-sectional study was conducted among 100 sexually active women with clinically diagnosed POP (POP-Q ≥ Stage I) and 100

age-matched controls. Sexual function was assessed using the PISQ-12, and scores were analyzed in relation to prolapse severity, age, parity, and body mass index (BMI). Data were analyzed using SPSS v25, with p < 0.05 considered statistically significant.

Results: Women with POP had significantly higher PISQ-12 scores than controls $(35.0 \pm 2.25 \text{ vs. } 25.9 \pm 2.53; p < 0.001)$, indicating greater sexual dysfunction. Mean scores increased with prolapse severity (Stage I = 32.1; Stage III = 37.3; p < 0.001). Dysfunction was more pronounced in older, multiparous, and obese women. Item-wise analysis revealed that physical symptoms—pain during intercourse, urinary leakage, and fear of

bulge—were the most affected domains, while partnerrelated factors were least impacted.

Conclusion: POP significantly impairs sexual function, with severity correlating with anatomical grade, age, and BMI. Sexual dysfunction arises through both physical and emotional pathways, underscoring the need for integrated management that includes pelvic floor rehabilitation, weight control, and psychosexual counselling to improve quality of life.

Keywords: Pelvic organ prolapse, Female sexual dysfunction, PISQ-12, Pelvic floor disorders, Body mass index, Quality of life

Introduction

Pelvic organ prolapse (POP) is a significant yet often underrecognized Gynaecological disorder characterized by the descent of pelvic organs—such as the uterus, bladder, or rectum—into or beyond the vaginal canal due to weakening of the pelvic floor muscles and connective tissues.¹ It is one of the most prevalent pelvic floor disorders (PFDs) affecting women, with nearly one in four adult Indian women reporting at least one PFD, and its incidence rises progressively with age.² The prevalence increases from 31.6% among women aged 50–59 years to 52.7% in those over 80 years.³ POP is frequently associated with urinary incontinence (UI), aggravating symptoms such as vaginal bulging, urinary and bowel dysfunction, and pelvic discomfort, thereby substantially compromising quality of life.⁴

Among the varied manifestations of PFDs, female sexual dysfunction (FSD) remains one of the most distressing yet underreported consequences.⁵ FSD affects between 38% and 85.2% of women, presenting as dyspareunia, reduced sexual desire, arousal difficulties, and orgasmic dysfunction.⁶ The effect of POP on sexual function is multifactorial, influenced by anatomical alterations,

physiological impairments, and complex psychosocial and cultural dimensions.⁷ Physical contributors—such as vaginal laxity, urinary leakage during intercourse, and discomfort—often coexist with psychological factors, including anxiety, depression, and negative body image, which together can strain intimate relationships.⁸ Additionally, sociocultural stigma surrounding female sexuality, especially in conservative societies, perpetuates silence around sexual health concerns, leading to delayed diagnosis and inadequate care.⁹

Despite its considerable prevalence and adverse implications, sexual dysfunction in women with POP often receives insufficient clinical attention. To address this gap, several validated instruments have been developed for evaluating sexual function, including the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) and the Female Sexual Function Index (FSFI).¹⁰, ¹¹ Although the FSFI is widely applied in assessing general sexual dysfunction, it lacks specificity for pelvic floor-related symptoms. In contrast, the PISQ-12 is a validated, condition-specific tool designed to measure sexual function in women with POP and UI. The PISQ-IR (IUGA-Revised), introduced in 2013, provides a more comprehensive framework but remains limited in widespread application due to the absence of established cutoff values. 12 Consequently, the PISQ-12 continues to be the preferred instrument for both diagnostic and outcome assessment purposes in women with POP. 13

Given the scarcity of Indian data exploring the relationship between POP and sexual function, this study aims to compare sexual function among women with and without POP using the PISQ-12 questionnaire. It also seeks to identify key determinants—such as age, menopausal status, parity, body mass index, and

comorbidities—that influence sexual function in affected women. The findings are expected to enhance understanding of the interrelationship between pelvic floor disorders and female sexual health, promoting the development of comprehensive, patient-centered management strategies that integrate both functional and sexual well-being.

Materials and Methods

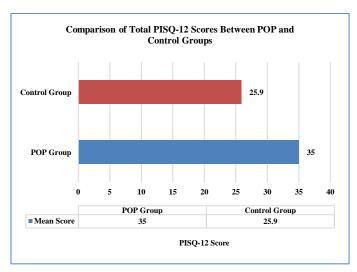
Study Design and Setting: This hospital-based, comparative cross-sectional study was conducted in the Department of Obstetrics and Gynaecology, SMS Medical College and Attached Group of Hospitals, Jaipur, Rajasthan, India, between January 2024 and December 2024. The study aimed to compare sexual function in women with and without pelvic organ prolapse (POP) using the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) and to evaluate the association between POP severity and domain-specific sexual dysfunction.

Study Population: A total of 200 sexually active women aged 30–55 years were enrolled. The study population comprised two groups: Group A (Study Group): 100 women with clinically diagnosed pelvic organ prolapse (POP-Q stage ≥1), and Group B (Control Group): 100 age-matched women without clinical evidence of POP. Exclusion criteria included women with a history of psychiatric illness, those on medications known to influence sexual function (e.g., antidepressants, hormonal therapy), pregnant women, and those who had undergone previous pelvic reconstructive surgery or hysterectomy.

Data Collection: After obtaining written informed consent, participants were interviewed using a pretested, structured proforma to record sociodemographic details, obstetric history, menopausal status, comorbidities, and

relevant clinical data. Clinical staging of POP was using the Pelvic performed Organ **Prolapse** Quantification (POP-Q) system, and women were classified according to the most advanced compartment as Stage I, II, or III. Stage IV cases were excluded due to their limited functional capacity and low occurrence rate. Assessment of Sexual Function: Sexual function was assessed using the Pelvic Organ Prolapse/Urinary Incontinence Sexual Ouestionnaire (PISO-12), a validated condition-specific instrument designed to evaluate sexual function in women with POP and urinary incontinence (Rogers et al., 2003). The PISQ-12 comprises 12 items divided into three domains: Behavioural/Emotional domain (Q1–Q4), Physical domain (Q5-Q9), and Partner-related domain (Q10-Q12). Each item is scored from 0 ("never") to 4 ("always"), with reverse scoring applied to positively phrased items. The total score ranges from 0 to 48, where higher scores indicate greater sexual dysfunction. Domain-specific scores were also calculated separately for detailed comparison.

Ethical Considerations: The study protocol was reviewed and approved by the Institutional Ethics Committee, SMS Medical College and Attached Hospitals, Jaipur (Ref. No.: 109 MC/EC/2023, dated 8 November 2024). Written informed consent was obtained from all participants after explaining the purpose, procedures, and confidentiality of the study. Statistical Analysis: Data were entered into Microsoft Excel and analyzed using IBM SPSS Statistics for Windows, Version 25.0 (Armonk, NY: IBM Corp.). Descriptive statistics were used to summarize demographic and clinical characteristics. Categorical variables were presented as frequencies and percentages, while continuous variables were expressed as mean ±


standard deviation (SD). Comparisons between the two groups were made using the Student's t-test or Mann—Whitney U test for continuous variables and the Chisquare test for categorical variables. Within the POP group, One-Way ANOVA or Kruskal—Wallis test (depending on data distribution) was applied to compare PISQ-12 domain scores across POP-Q stages. Correlations between POP severity and total as well as domain-wise PISQ-12 scores were assessed using Spearman's rank correlation coefficient. A p-value < 0.05 was considered statistically significant.

Results

Women with POP had substantially poorer sexual function than controls. The mean total PISQ-12 score was 35.00 ± 2.25 in the POP group versus 25.90 ± 2.53 in controls (independent t-test: t = 27.0, df = 198, p < 0.001), indicating a large and clinically meaningful between-group difference.

Table 1: Total PISQ-12 Score: POP vs Control

Group	Mean ± SD	n	p-value
POP	35.00 ± 2.25	100	< 0.001
Control	25.90 ± 2.53	100	101001

PISQ-12 by POP Severity. Among women with POP, sexual dysfunction increased progressively with

anatomical severity. Mean scores rose from 32.1 (Stage I) to 34.4 (Stage II) and 37.3 (Stage III). One-way ANOVA showed a strong overall difference (F = 193; p < 0.001), supporting a clear dose–response relationship between POP severity and sexual dysfunction.

Table 2: PISQ-12 by POP-Q Stage (POP Group Only)

POP-Q Stage	Mean ± SD	n
Stage I	32.1 ± 0.97	22
Stage II	34.4 ± 0.79	37
Stage III	37.3 ± 1.10	41
Overall	35.0 ± 2.25	100

Age-Stratified Comparison. Across all age bands, women with POP had higher PISQ-12 scores than controls. Within the POP group, scores increased with age (from 32.4 at 30–35 years to 37.2 at 51–55 years). Two-way ANOVA demonstrated significant main effects of study group and age, and a significant interaction (Group F=787.05; Age F=14.14; Interaction F=8.73; all P=14.14; Interaction P=14.14; Interact

Table 3: Age-wise PISQ-12 (POP vs Control)

Age	POP Mean ± SD	Control Mean ± SD
(years)	(n)	(n)
30–35	32.4 ± 0.70 (10)	25.6 ± 1.87 (22)
36–40	32.3 ± 1.30 (16)	25.6 ± 3.07 (20)
41–45	34.3 ± 1.07 (14)	26.4 ± 2.03 (18)
46–50	34.8 ± 1.12 (20)	25.8 ± 2.61 (20)
51–55	37.2 ± 1.07 (40)	26.3 ± 3.01 (20)
Overall	$35.0 \pm 2.25 (100)$	25.9 ± 2.53 (100)

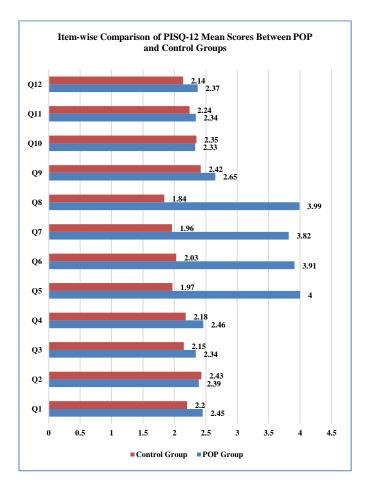
Parity-Stratified Comparison. POP was associated with higher PISQ-12 scores at every parity level, with a stepwise rise from 32.4 (parity 1) to 37.2 (parity 4). Two-way ANOVA showed significant main effects and interaction (Group F = 725.2; Parity F = 20.8;

Interaction F=13.5; all p<0.001), indicating that the negative effect of POP increases with higher parity.

Table 4: Parity and PISQ-12 (POP vs Control)

Parity	POP Mean \pm SD (n)	Control Mean \pm SD (n)
1	$32.4 \pm 0.70 (10)$	25.6 ± 1.85 (20)
2	32.2 ± 1.27 (15)	25.7 ± 2.64 (30)
3	$34.5 \pm 1.09 (35)$	26.1 ± 2.56 (25)
4	37.2 ± 1.07 (40)	26.2 ± 2.92 (25)
Overall	$35.0 \pm 2.25 (100)$	$25.9 \pm 2.53 (100)$

BMI-Stratified Comparison. In all BMI categories, POP was associated with worse sexual function than controls. Within the POP group, mean PISQ-12 scores increased with adiposity (Normal 32.7 \rightarrow Overweight 35.4 \rightarrow Obese 38.0). Two-way ANOVA confirmed significant main effects and an interaction (Group F = 247.8; BMI F = 25.9; Interaction F = 15.4; all p < 0.001), indicating that higher BMI amplifies the detrimental impact of POP on sexual function.


Table 5: BMI Category and PISQ-12 (POP vs Control)

BMI	POP Mean ± SD	Control Mean ±
DIVII	1 Of Mean ± 3D	Control Mean ±
Category	(n)	SD (n)
Underweight	30.0 ± 0.00 (2)	27.3 ± 3.06 (3)
Normal	32.7 ± 0.84 (30)	25.6 ± 2.32 (45)
Overweight	35.4 ± 0.98 (45)	25.8 ± 2.67 (35)
Obese	38.0 ± 0.93 (23)	$26.7 \pm 2.66 (17)$
Overall	$35.0 \pm 2.25 (100)$	25.9 ± 2.53 (100)

Item-wise PISQ-12 Differences. Marked between-group differences were concentrated in physical symptom items (Q5–Q8), all highly significant (p < 0.001), reflecting pain, incontinence, fear of leakage/bulge, and avoidance. Statistically significant differences also appeared in desire (Q1), satisfaction (Q4), emotional discomfort (Q9), and orgasm intensity (Q12). Items related to partner factors (Q10–Q11) showed no significant differences.

Table 6: Item-wise PISQ-12 (POP vs Control)

Item	POP Mean ± SD	Control Mean ± SD	p
Q1	2.45 ± 0.744	2.20 ± 0.778	0.021
Q2	2.39 ± 0.840	2.43 ± 0.700	0.715
Q3	2.34 ± 0.934	2.15 ± 0.730	0.111
Q4	2.46 ± 0.915	2.18 ± 0.757	0.019
Q5	4.00 ± 0.000	1.97 ± 0.577	< 0.001
Q6	3.91 ± 0.288	2.03 ± 0.784	< 0.001
Q7	3.82 ± 0.386	1.96 ± 0.695	< 0.001
Q8	3.99 ± 0.100	1.84 ± 0.707	< 0.001
Q9	2.65 ± 0.757	2.42 ± 0.794	0.037
Q10	2.33 ± 0.726	2.35 ± 0.833	0.857
Q11	2.34 ± 0.742	2.24 ± 0.740	0.341
Q12	2.37 ± 0.837	2.14 ± 0.779	0.046

Discussion

Women with pelvic organ prolapse (POP) exhibited significantly higher PISQ-12 scores than controls (35.0 ± 2.25 vs. 25.9 ± 2.53; p < 0.001), confirming a clinically meaningful reduction in sexual function. This nearly 9-point gap on a 48-point scale underscores the major negative impact of POP on sexual well-being. These findings concur with Trang et al. (2019)¹⁴ and Grzybowska et al. (2019)¹⁵, who documented a high prevalence of female sexual dysfunction (FSD) in women with prolapse, particularly in behavioural-emotional and physical domains. The results also echo Lau et al. (2020)¹⁶ and Antosh et al. (2020, 2021)¹⁷, who demonstrated significant postoperative improvement in PISQ scores, confirming that POP is a reversible and independent determinant of sexual dysfunction.

Sexual dysfunction worsened progressively with anatomical severity, with mean PISQ-12 scores increasing from 32.1 in Stage I to 37.3 in Stage III prolapse (p < 0.001). This strong dose–response trend indicates that as prolapse advances, both physical and psychological aspects of sexuality deteriorate. Similar gradients were described by Darvish et al. (2024)¹⁸ and Trang et al. (2019)¹⁴. Importantly, even Stage I women reported substantial dysfunction, aligning with Moroni et al. (2018)¹⁹, who noted that body-image distress and fear of worsening symptoms contribute to sexual avoidance even in early disease. These findings reinforce the need for early recognition and counselling for sexual health in all stages of POP.

Across all age strata, POP patients had significantly higher PISQ-12 scores than controls (p < 0.001). Within the POP group, dysfunction increased with age (32.4 \rightarrow 37.2). However, even younger women (30–35 years) exhibited considerable impairment, challenging the

assumption that sexual dysfunction is purely age-related. Similar patterns were reported by Zhuo et al. (2021)²⁰ and Ugurlucan et al. (2020)²¹, who emphasized that prolapse severity rather than chronological age predicts sexual decline. The control group's stable scores across ages suggest that aging alone does not impair sexual function in the absence of pelvic floor pathology.

Higher parity was associated with elevated PISQ-12 scores in POP women, with mean values rising from 32.4 in parity 1 to 37.2 in parity 4 (p < 0.001). Nonetheless, even primiparous women with POP experienced significant dysfunction, indicating that once prolapse develops, anatomical and psychological factors outweigh parity count. These results align with Darvish et al. (2024)¹⁸ and Moradi et al. (2025)²², who observed that prolapse severity—not parity itself—is the dominant determinant of sexual impairment. In controls, parity did not affect sexual function, reinforcing that the presence of prolapse, not childbirth history alone, drives dysfunction.

Body mass index showed a strong modifying effect on sexual function among POP women. Mean PISQ-12 scores increased steadily from normal-weight (32.7 \pm 0.84) to overweight (35.4 \pm 0.98) and obese groups (38.0 \pm 0.93; p < 0.001), while remaining stable among controls. The significant interaction between study group and BMI indicates that excess weight amplifies the adverse sexual impact of POP. This is consistent with Sartori et al. (2021)²³ and Zhuo et al. (2021)²⁰, who identified obesity and reduced pelvic muscle tone as risk factors for poor sexual outcomes. The findings highlight the importance of weight management and pelvic-floor rehabilitation in prolapse care.

Item-wise comparison revealed that the largest betweengroup differences occurred in the physical domain (Q5– Q8: dyspareunia, coital incontinence, fear of bulge, vaginal dryness; all p < 0.001). Significant deficits were also noted in behavioural-emotive items (Q1 and Q4) reflecting reduced desire and satisfaction, whereas partner-related items (Q10–Q11) showed minimal difference. This pattern indicates that POP primarily impairs sexual function through symptom-driven physical and emotional mechanisms rather than partner factors. These results align with Zhuo et al. $(2021)^{20}$ and Martins $(2025)^{24}$, emphasizing the dual physical-psychological burden of prolapse on sexual well-being.

Conclusion

Pelvic organ prolapse (POP) has a profound and multidimensional impact on female sexual function. In this study, women with POP demonstrated significantly higher PISQ-12 scores compared to controls, confirming the presence of clinically meaningful sexual dysfunction. The severity of dysfunction increased progressively with prolapse stage and was further amplified by advancing age, higher parity, and obesity. Item-wise analysis revealed that physical symptoms such as dyspareunia, fear of incontinence, and vaginal dryness were the most affected domains, accompanied by emotional and relational disturbances. These results highlight that POP compromises sexual health not only through anatomical distortion but also through psychological and quality-oflife dimensions. Comprehensive management of women with prolapse should therefore include systematic assessment of sexual function, targeted pelvic floor rehabilitation, weight management, and psychosexual counselling. Early identification and multidisciplinary care—addressing both physical and emotional aspects are essential to restore sexual well-being and overall quality of life in affected women.

References:

- Kuo CH, Mikes BA. Pelvic Organ Prolapse. [Updated 2025 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK563229/
- Mittal A, Saini A, Panwar VK, Chezhian S, Bahurupi Y, Gehlot M. Female Pelvic Floor Disorders in Northern India: Uncommon or Underreported? Cureus. 2024 Nov 22:16(11):e74203.
- Wu JM, Vaughan CP, Goode PS, Redden DT, Burgio KL, Richter HE, Markland AD. Prevalence and trends of symptomatic pelvic floor disorders in U.S. women. Obstet Gynecol. 2014 Jan;123(1):141-148.
- 4. Munno GM, La Verde M, Lettieri D, Nicoletti R, Nunziata M, Fasulo DD, Vastarella MG, Pennacchio M, Scalzone G, Pieretti G, Fortunato N, De Simone F, Riemma G, Torella M. Pelvic Organ Prolapse Syndrome and Lower Urinary Tract Symptom Update: What's New? Healthcare (Basel). 2023 May 22;11(10):1513.
- Safak Y, Inal Azizoglu S, Alptekin FB, Kuru T, Karadere ME, Kurt Kaya SN, Yılmaz S, Yıldırım NN, Kılıçtutan A, Ay H, Burhan HS. Antidepressant-associated sexual dysfunction in outpatients. BMC Psychiatry. 2025 Apr 2;25(1):317.
- Jaafarpour M, Khani A, Khajavikhan J, Suhrabi Z.
 Female sexual dysfunction: prevalence and risk factors. J Clin Diagn Res. 2013 Dec;7(12):2877-80.
- Cisak MZ, Zwierzchowska A, Barcz E, Horosz E. Sexual function in women with pelvic organ prolapse and surgery influence on their complaints. Ginekologia Polska. 2023;94(11):939-43.

..........

- 8. Roslan NS, Jaafar N, Sidi H, Baharudin N, Kumar J, Das S, Hussain NH. The Bio-Psycho-Social Dimension in Women's Sexual Desire: 'Argumentum ad novitatem'. Current Drug Targets. 2019 Feb 1;20(2):146-57.
- Mohd Tohit NF, Haque M. Forbidden Conversations: A Comprehensive Exploration of Taboos in Sexual and Reproductive Health. Cureus. 2024 Aug 12;16(8):e66723.
- Rogers GR, Villarreal A, Kammerer-Doak D, Qualls C. Sexual function in women with and without urinary incontinence and/or pelvic organ prolapse.
 Int Urogynecol J Pelvic Floor Dysfunct. 2001;12(6):361-5.
- 11. 't Hoen LA, Utomo E, Steensma AB, Blok BF, Korfage IJ. The Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12): validation of the Dutch version. Int Urogynecol J. 2015 Sep;26(9):1293-303.
- 12. Grzybowska ME, Wydra D. Responsiveness of two sexual function questionnaires: PISQ-IR and FSFI in women with pelvic floor disorders. Neurourol Urodyn. 2021 Jan;40(1):358-366.
- 13. Kamińska A, Skorupska K, Kubik-Komar A, Futyma K, Filipczak J, Rechberger T. Reliability of the Polish Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) and Assessment of Sexual Function before and after Pelvic Organ Prolapse Reconstructive Surgery-A Prospective Study. J Clin Med. 2021 Sep 15:10(18):4167.
- 14. Trang HN, Cuong PH, Tuyet HT. Prevalence of female sexual dysfunction among women with pelvic organ prolapse diagnosed by PISQ-12 and

- related factors in Hung Vuong Hospital, Vietnam. Open J Obstet Gynecol. 2019 Jul 4;9(7):1005–1018.
- 15. Grzybowska ME, Futyma K, Wydra D. Identification of the Pelvic Organ Prolapse/Incontinence Sexual Questionnaire-IUGA Revised (PISQ-IR) cutoff scores for impaired sexual function in women with pelvic floor disorders. J Clin Med. 2019 Dec 19;9(1):13.
- 16. Lau HH, Sun FY, Wang H, Su TH, Huang WC. Cutoff score of the traditional Chinese version of the short form of the pelvic organ prolapse/urinary incontinence sexual questionnaire (PISQ-12). Taiwan J Obstet Gynecol. 2020 Mar;59(2):227–230.
- 17. Antosh DD, Dieter AA, Balk EM, Kanter G, Kim-Fine S, Meriwether KV, et al. Sexual function after pelvic organ prolapse surgery: a systematic review comparing different approaches to pelvic floor repair. Am J Obstet Gynecol. 2021 Nov;225(5): 475.e1–475.e19.
- 18. Darvish S, Fakari FR, Ashka NK, Mazaheri A. Evaluation of the relationship between the severity of pelvic organ prolapse and female sexual function. Adv Biomed Res. 2024 Jul 29; 13:41.
- 19. Moroni RM, Alves da Silva Lara L, Ferreira CH, de Mello Constantino M, Oliveira Brito LG. Assessment of body image, sexual function, and attractiveness in women with genital prolapse: a cross-sectional study with validation of the body image in the pelvic organ prolapse (BIPOP) questionnaire. J Sex Med. 2019 Jan;16(1):126–136.
- 20. Zhuo Z, Wang C, Yu H, Li J. The relationship between pelvic floor function and sexual function in perimenopausal women. Sex Med. 2021 Dec;9(6):100441.

- 21. Ugurlucan FG, Evruke I, Yasa C, Dural O, Yalcin O. Sexual functions and quality of life of women over 50 years with urinary incontinence, lower urinary tract symptoms and/or pelvic organ prolapse. Int J Impot Res. 2020 Sep;32(5):535–543.
- 22. Moradi M, Mohammadzadeh F, Niazi A, Afiat M. The relationship between women's sexual function and type of delivery and pelvic organ prolapse: a cross-sectional study. Health Care Women Int. 2025;46(2):149–161.
- 23. Sartori DVB, Kawano PR, Yamamoto HA, Guerra R, Pajolli PR, Amaro JL. Pelvic floor muscle strength is correlated with sexual function. Investig Clin Urol. 2021 Jan;62(1):79–84.
- 24. Martins FE. Pelvic organ prolapse and sexual dysfunction. Société International d'Urologie Journal. 2025 Feb 18;6(1):19.